EPFL- Fall 2024

Differential Geometry IV:

G. Moschidis

SOLUTIONS: Series 9 General relativity 13 Nov. 2024

9.1 In this exercise, we will establish Birkhoff’s theorem for spherically symmetric solutions to the
vacuum Einstein equations in 3 + 1-dimensions.

(a)

Let (M3 g) be a Lorentzian manifold such that M = Q! x §? and, in any local
coordinate chart (2%, z') on Q and using the standard (6, ¢) coordinates on $?, g takes
the form
g = Gapdr’ds® + r? (d92 + sin? 0d¢2)

with A, B € {0,1} and:

* gap and r depend only on 2°, z!,

x> 0.
Deduce that (M, g) is spherically symetric, i.e. SO(3) acts isometrically on (M, g) with
spherical orbits. Show also that, around any point p € Q, there exists a local coordinate
system (u,v, 6, ¢) around {p} x 5% such that

g = —Q%(u,v)dudv + r*(u,v) (d6* + sin® 6d¢?).

(such a coordinate system is called double null). Hint: Use Exercise 2.3.

Remark. It can be shown that any spherically symmetric spacetime can be expressed
locally in the above form.

Assume that (M, g) above satisfies the vacuum Einstein equations Ric,s = 0. In dou-
ble null coordinates, it can be easily calculated that this system of equations takes the
following form in terms of the metric components €2 and 7:

D40, (r?) = —%QQ,
2

Q
0,0, log(9?) = 2—7&(1 +4Q720,r0,1),

8U(Q_28ur) =0,
0,(Q720,r) = 0.

(note that this is an overdetermined system; this is why, at the end of the day, Birkhoff’s
theorem holds). Show that the quantity m : Q@ — R defined by

LT
T2
(which is known as the Hawking mass of the sphere {p} x 5?) is locally constant on Q.
Let gp; be the Schwarzschild metric for M € R. Show that, in this case, m = M.

Let p € Q and assume, without loss of generality, that (u(p),v(p)) = 0. Show that there
exists an open neighborhood U of {p} x $? in M and an open neighborhood Us,, of a
point ¢ in the maximally extended Schwarzschild spacetime with M = m(p) (chosen so
that r(q) = r(p)) which are isometric. Hint: Choose coordinates u,v on Use, so that the
functions 0,7 (u,0) and 0,7(0,v) are the same in both spacetime domains. Deduce that the
functions r(u,v) and Q(u,v) are the same for both spacetime domains, using the system
of equations.

m (1 — gaﬁaaragr) = g(l + 49_25ur6vr)

Page 1



EPFL- Fall 2024 Differential Geometry 1V: G. Moschidis
SOLUTIONS: Series 9 General relativity 13 Nov. 2024

Solution. (a) Since, in the (2!, 2%, 0, ¢) coordinate system, the metric g takes the form
g = gapda’da® +17ge2(6, ),

where go» = df? +sin® 0d¢? and gap,r are independent of 6, ¢, any map F : 32 — 52, (0, ¢) — (0, ¢)
, which is an isometry of the spherical metric gs2 extends to a map (z', 22,0, ¢) — (2!, 2%, 0, ¢') which
is an isometry of (M, g). Therefore, the group of isometries SO(3) of (52, gs2) acts isometrically on
(M, g) with orbits of the form {p} x S? for each p € Q.

Note that the components g4p in the expression above define a Lorentzian metric g on Q (it is easy
to check that it is symmetric and has Lorentzian signature, since the 3 + 1-metric g has Lorentzian
signature; the transformation formulas for g under changes of coordinates (z*, 22,0, ¢) — (y', 42,0, ¢)
imply that g indeed transforms as a (0, 2)-tensor). Using Exercise 2.3, for any p € Q, there exists a
coordinate system (u,v) in a neighbohood U C Q of p in which the metric § takes the form

G = —0(u,v)dudv

for some Q € C(U). Therefore, in the (u,v,0,$) coordinate system on U x 52 C M, the metric g
takes the form
g = —Q%(u,v)dudv + r*(u,v) (d6* + sin® 6d¢?).

(b) We can readily compute using the expression for m:

Oum = 0, (5 (1+4Q720,00,7) )

= % (1 + 49728117"807“) + 270, (Q20,7)0yr + 2rQ20,10,0,7.

Using the Einstein vacuum equations for the (€, r) pair (as listed in the exercise), among them, in
particular, the relations

1 1
0,(27%20,7r) =0 and 0,0,r = ——O% — = - 9,10,
4r T

we obtain that 9,m = 0. Similarly, 9,m = 0. Therefore, m is locally constant on Q (i.e. it is constant
in every connected component of Q).

(¢) Using the more geometric relation

m = g(l — go‘ﬁaarﬁﬁr),

we can compute for the Schwarzschild metric

gm = —<1 — %)dﬁ + (1 — ﬂ>_ldr2 + 7%(d6* + sin® §d¢?),

T r

in the (t,7,0,¢) coordinate system covering region I of the maximal extension:

r N r o r 2M
m = 5(1 — g™ 0,r0pr) = 5(1 — g7 0,r0,r) = 5(1 —(1— T)) =M.
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Since m is locally constant and the maximally extended Schwarzschild spacetime is connected, we
deduce that m = M on the whole of the Schwarzschild spacetime.

(d) For this part, we will use the subscript S (i.e. Qg and rg) to denote quantities associated
to the Schwarzschild metric. Let us consider the maximally extended Schwarzschild metric in the
Kruskal coordinates (u,v,0,¢) (the precise choice of these coordinates is not important; any double
null coordinate system covering the whole Schwarzschild manifold would suffice):

gu = —Qgdudv + r(u, v) (d6° + sin® 0de?),

where

rs
and 7g(u,v) is defined by the implicit relation:

<7§UL1)1)> exp (;—AZ) = —uv

(recall that, in this case, the range of the coordinates (u,v) is R* N {uv < 1}).
Our aim is to show that, after applying a coordinate transformation of the form (u,v,0,¢) —
(v = u'(u), v =v'(v),0,¢) in a neighborhood U x 5% of the point p € M = Q x 5%, we can achieve

Qu,v) = Qs(u,v) and r(u,v) =rg(u,v) forall (u,v) €U (1)

(this will imply, in particular, that (M, g) is locally isometric, around p, to the open domain
in Schwarzschild spacetime parametrized by (u,v,0,¢) € U x S%). To this end, let us fix the
Schwarzschild mass parameter M so that

M = m(p)

(recall that mg = M on the Schwarzschild spacetime). Note that since the metric coefficient Q* can
be expressed in terms of the Hawking mass m and the sphere radius r by the relation

(ﬁ@f—%ﬁ):—Aam@m (2)

r

showing (1) reduces, in this case, to simply establishing that
r(u,v) = rg(u,v) for (u,v) €Y.

Let ¢ = (ug, vo, 0, ®) be a point on the maximally extended Schwarzschild spacetime satisfying

We will distinguish two cases:

1. In the case when rg(q) = r(p) # 2M, we will make no further assumptions on the point q.
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2. In the case when rg(q) = r(p) = 2M, the expression (2) (together with our assumption that
m(p) = M = mg(q)) implies that

Aur(p)0yr(p) = 0 = 9urs(q)durs(q)-

Therefore, in this case, we choose the point ¢ on the subset {r =2M} = {u =0} U {v = 0} of
Schwarzschild spacetime so that d,r5(q) = 0 if and only if d,7(p) = 0 and 9,7rs(¢q) = 0 if and
only if 9,7(p) = 0.

By applying a coordinate transformation of the form (u,v) — (u + ug, v 4+ vy) on (M, g), we can
assume without loss of generality that

Our(u,v) Oy (u,v)
811,""5'(“7’”) and auTS(uﬂ)

Our choice of the point ¢ above then implies that the functions y are well-defined
and continuous in (u,v) a neighborhood of (ug, vy).

Let U = (ug — 6, up + d) X (vg — &, v9 + 9) for some § > 0 small enough. We will show that there
exists a coordinate transformation of the form (u,v) — (v/,v") = (F(u), G(v)) on U with F(ug) = uo

and G(vg) = vg such that, in the new coordinate system on M, we have

r(ug,v) = rg(ug,v) and r(u,vy) =rg(u,v9) for v e (vo—0,vo+9), u € (ug—J, up+J), respectively.

Since 7 (ug, vg) = r5(uo, vy), it suffices to have

Opr (g, v) = Oyrs(ug,v) and Oyr(u,vy) = Ours(u,vy) for v € (vo—0,v9+9), u € (ug—3, up+0), respectively.

Thus, the coordinate transformation functions F'(u) and G(v) are uniquely determined by the fol-
lowing conditions (with respect to the old coordinates):

{d—F(U) _ Our(u,v) ﬁ(v) _ Our(uow)

du T Ours(uyv)? dv Oyprs(ug,v)’

F(Uo) = U, G(Uo) = Vo

With respect to the new coordinate system on M, we have the property that both the functions
r(u,v) and rg(u,v) satisfy the non-linear wave equation
2M

8u(9vr = m@uravr on (UO — 5, Uo + 5) X ('U(] — 6, Vo + (S)

(this is simply equation 9,0, (r%) = £Q? for the metrics g and gy, where we have used again the rela-
tion (2) to express Q2 in terms of (m, ) together with the condition that m = M in a neighborhood
of p € M) and satisfy r = rg along {u = up} and {v = vo}. Therefore, the uniqueness property for

non-linear wave equations implies that
r=rg on (ug—0d,ug+0) X (vo—0,v9+9),

as desired.
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9.2 Let (M,g) be a Lorentzian manifold and S C M be a submanifold. For any vector field
W along S which is orthogonal to S, we will define the associated second fundamental form
XM T(S) x T(S) — R by the relation

XM(X,Y) = g(VxWY),
where V denotes the connection of g and we think of X, Y as being extended to vector fields
in M.

(a) Show that x(") is well defined independently of the choice of extensions of X,Y. Show
also that it is a symmetric (0, 2)-tensor field.

(*b) Assume that S is spacelike; we will also denote the induced (Riemannian) metric on S by
h. Let W be a non-vanishing vector field on M which is orthogonal to .S and let <I> ) be

the flow map of W. For the one parameter family of surfaces S; = §W)(S), with induced
metrics h;, show that, in any coordinate chart (x!,z?) on S;which is transported along
the flow of W:

7 det(hy) o = trpx W det(h),

where tr,xy(") = hAB ) For this reason, tr,x"") is usually called the expansion in the

direction of W, since 1t measures the rate of change of the volume form of S. (Hint: You
might want to use Jacobi’s formula from linear algebra: % log(det M) = tr(M 1< SM) for
a square-matriz valued function M(t).)

(c) We will now restrict to the case when M is 34 1 dimensional and time oriented and that
S is a 2-dimensional surface.. in that case, at each point p € S, the normal bundle 7'S*
is spanned by two future directed null vector fields along .S, which we will denote with
L and L. We will also denote the induced (Riemannian) metric on S by h. We will say
that such a surface S is trapped if it is compact and, at every point on S, both null
expansions are negative, i.e.

tth(L),tth@ < 0.

Show that, on the maximally extended Schwarzschild spacetime, the spheres of symmetry
are trapped if and only if they correspond to points in the region /1 of the Penrose diagram
(i.e. the black hole region).

Remark. We will later see in class that, as a consequence of Penrose’s incompleteness theorem, if
an asymptotically flat spacetime contains a trapped surface S, then this is necessarily inside a black
hole, i.e. JT[S] does not reach future null infinity #*. Since the condition defining a trapped surface
is anopen condition, a trapped surface remains trapped even under small changes of the metric; thus,
small perturbations of Schwarzschild spacetime still contain a black hole.

Solution.
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(a) Let X,Y be tangent vector fields to S, extended arbitrarily to vector fields on M. Let us also
extend W arbitrarily to a vector field on M. In view of the fact that W|g is orthogonal to S and X
is tangential to S, we have

gWY)|s =0= X(g(W,Y))|g=0= g(VxW,Y)|4+g(W,VxY)|,0 =

from which we deduce that:
"(X,Y)=—g(W,VxY)|s. (3)

The fact that x")(X,Y) is independent of the choice of extension of X,Y, W now follows from
the fact that VxY|s is independent of the choice of extensions from XY (which can be readily

verified in any local coordinate system (z',...,2%mM)) on &/ C M in which SN U is the set
{l’l = xdim(./\/l)fdim(S) — 0})

To prove that ") is a symmetric (0, 2)-tensor field, we will show that

e For all smooth functions fi, fo : M — R and smooth vector fields X, Y; and Y5, we have

(X, /Y1 + fY2) = XX 1) + fx™M(X,Y2). (4)

e For all smooth vector fields X and Y, we have

MXY) ="y, X). (5)

Relation (4), follows immediately from the fact that g is a tensor: For all smooth functions fi, fo
and smooth tangent vectors X, Yi, Yo, we have

"X, LY: + f.Ya) = g(VxW, iYh + foV5)
= fig(VxW. Y1) + fog(Vx W, Yz)

= fix"™ (X, 1) + fx" (X, fYa).

Relation (5) follows immediately from (3), the fact that the Levi-Civita connection is symmetric and
the fact that, if X|Y € I'(M) are tangent to S, then [X,Y] is also tangent to S (which can be
verified in local coordinates as above):

XX, Y) XY, X) = —g(W,VxY)+g(W,VyX) = —g(W, VxY -VyX) = —g(W,[X,Y]) = 0.

(b) Let S C M be a spacelike hypersurface and W € I'(M) be as in the statement of the exercise;
recall that W doesn’t vanish anywhere. Let also n = dim(S), m = dim(M). Note that, for any
p €S, since W|, L T,S and T,S is spacelike, we have that |, is transversal to 7,,S.!

For any p € S, let (2! z™) be a local coordinate system in a neighborhood U C S of p.
Since W|, # 0 and is transversal to T,,9, the flow map @MW) : (=4,0) x U — M, (t,at,...,2") —

@gw)(xl, ...,2") is an embedding on a small neighborhood of (0,p) (to see this, use the implicit
function theorem: note that the differential @], satisfies d®"™)|( ) (X) = X for any X € T,S

!That wouldn’t necessarily be the case if 7},S was null, for instance.
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and d®™)|,)(8;) = W|,, hence d®"W)|, ) is injective since W], is transversal to T,,5). Without
loss of generality, we will assume that 6 > 0 has been fixed small enough and U is a small enough
neighborhood of p in S so that ®") : (=§,§) x U — M is an embedding.

Let us denote with A = W <(—(5 J) XU) C M. Note that, through the map ®™) (¢, 2!, ... 2")

defines a coordlnate system on N, such that &; = W and (x!,...,2") is a coordinate system on the

slices U, = ®")(U) for each t € (=8,0). Thus, if h, denotes the induced metric on U; (so that
h = hgy), we can compute:

at(ht)" — at(ht(a“aj)) = ht(Vaﬁi,Gj) + ht(V&:ajaai)
[ata] 0 ht(Va at’a‘) —+ ht(Vajai;ai)‘

Evaluating the above at ¢t = 0 and using the fact that 0, = W and XS/V) = h(Vs, W, 0;), we get
W W W
Or(he)ijli=o = XEJ )+X§i ) = 2X§j ) (6)
Using Jacobi’s formula £ log(det M) = tr(M <4 M), we then get:

16t(det (he))] g 1det(h) - (R - Oi(he)ij) =0
det(h) 2 det(h)

1 .
O/ det(hy) !t 0= éx/det(h)Qh”Xgm = /det(h)tryxy™)

Let us denote by S; the image (ID,EW)(S). We will fix a coordinate system (z!,... z") on @gw)(U)
so that the functions z° are transported along the flow of W.

(c) Recall that the maximally extended Schwarzschild spacetime (M%}, gu) is covered by the

Kruskal-Szekeres double null coordinate system (U, V6, ¢), in which /\/lg\f,z ~ Y x B2 with U =
{U V< 1} and
32M

gm = e~ dUdV +r (d92 + sin? Odyp )

where r = r(U, V) is defined implicn:ly by the relation

U-V:(1—ﬁ)eﬁ (7)
(any local choice of a spherically symetric double null coordinate system would work equally well
for the computation below). We fix a time orientation so that the null vectors dy, 0y are future
directed. The black hole interior (the region II in the Penrose diagram) corresponds to the region
{U>0,V>0}.

The spheres of symmetry correspond to the 2-surfaces {U,V = const}. Note that the induced

metric on those surfaces is
h=r? (d(92 + sin? (9d<p2) = 12 g2,

while the future directed null normal vector fields L, L can be simply chosen to be L = 0y, L = 0p.
Note that, in this case, the flow map of L is simply a translation in the V' coordinate (and similarly
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for L); therefore, from the formula (6) (with the role of ¢t now played by V'), we have (with (2!, 2?) =
(6,)) X '
Xz(f) = 53\/% = §3v (7’2(952)ij) = rdyr(gs?)ij

(since the components of (gs2);; only depend on (2!, z?)) and, similarly,

X'E]'L) = royr(gs? )zg

Therefore, the sphere of symmetry is trapped if and only if Oyr < 0 and dyr < 0. Differentiating the
implicit relation (7) with respect to U and V, it is easy to verify that this only holds when U > 0
and V > 0.

9.3 Let 1
T/w [¢] = a}t¢aV¢ - §gxwgaﬁaa¢aﬂ¢
be the energy momentum tensor associated to the scalar wave equation O;¢ = 0 on (M, g)

(recall that O, = ¢**V, V¢ = ﬁ@a (v/—detgg®?93)). For the first two questions, we will
not assume that ¢ : M — R solves any particular equation.

(a) Show that, for any ¢ € C*°(M), any p € M and any two future oriented causal vectors
V,W € T,M:
TwolVFWY >0

(Hint: Choose a suitable double null frame in T,M). If V,W are moreover timelike, show
that

T V' WY = ¢ |09],

i=0
with the constant ¢ > 0 depending on VW, g and the choice of local coordinates (but is
independent of ¢).

(b) Assume, now, that ¢ solves ;¢ = 0. Show that
(divT[@]), = g™’V aTs,[¢] = 0.

(c) Show that, if, in addition, V is a Killing vector field of (M, g), then the 1-form JY [¢] =
T, [¢]V* is divergence free, i.e.

divJ"[¢] = g*’V,J§ [¢] = 0.
Solution.
(a) Note that, for any V,W € T'(M):

T(el(V, W) = T [o]VIW?
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= (V40,6)(W*0,6) — 3 (g V" W) (50 0.6059)

= V(6 (9) — 50V, W)g™ (0.6)(930).

Assume that both V and W are causal and future directed (so that, in particular, g(V, W) < 0).
The tangent vectors V' and W span the space Il := span({V,W}) C T M. If the dimension of II is
one, namely if W = AV for some A\ > 0 (the sign condition follows from the assumption that both
vector fields are future directed), the claim follows easily: If V' is null, then T'(V, W) = )\(V(gzﬁ))2 > 0;
if V' is timelike then, with respect to an orthonormal frame {eg, e1,...,e,} such that V = Neg, we

can compute from the above expression:

T(V, W) = XT(V, V) = ANV T(eo,c0) = GANP (co@))? + -+ (en(8))?).

Thus, from now on, we will assume without loss of generality that V, W are not collinear, so that
IT is a 2 dimensional plane. Note that II is a tzmelike plane, since it contains at least one timelike
vector.

We choose two future directed null vectors L and L spanning II, normalized so that

9(L,L)=0, g¢g(L,L)=0, g(L,L)=-2 (8)
and express V' and W with respect to this basis,
V=aL+aL, W=pL+pL.

Note that, since V, W, L, L are all future directed (and hence all their pairwise inner products are
non-negative), we must have

ai, g, B, B2 2 0. (9)
Moreover, V, W are both strictly timelike if and only if
ai, g, P, B >0 (10)

(since if one of these coefficients (say «;) is 0, then the corresponding vector (in this case, V') is equal
to a null vector (in this case, L).
Since II is a 2-dimensional subspace, we can split the tangent space as

TLM=1@IH,
where
II:= span({V, W}),
I+ = {X eT,M:g(X,Y)=0, VY €I}
Note that I+ is spacelike and of dimension n — 1; let {e;,...,e,_1} be an orthonormal basis of II+.
Thus,

g(L7€i) = 07 g(La ei) = 07 g(eivej) = 61']' (]‘1)
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forall i =1,2,....n— 1. We can easily compute
T(¢l(L,L) = L(¢)L(¢) — %Q(L, L)g*(0a9)(00) = (L(9))?,
T[G)(L L) = L(G)L() — 59(L, L)g™(0u6)(036) = (L(6))
Moreover, there exist real ceofficients b, ¢ and {d; : i = 1,...,n — 1} so that
1

gradg = bL + cL + Z d;e;

i=1

(where grad¢® = 0%¢ = g*?93¢). In fact, due to (8) and (11), these ceofficients are given by

b= —59(grads, L) = —3d(L) = —3L(9),
c= —%g(grad¢, L) = —%d(,b([/) = —%L(@,
d; = g(grado, e;) = do(e;) = ei(9).
Now, these yield that
TG)(L. L) = L(@)L() ~ 50(L, L)g"(0a0)(930)

= L(¢)L(0) + g7 (0a0) (950)

= L($)L(¢) + 9as(079)(8"9)

= L(¢)L(¢) + ¢ (bL +cL + ”Z diei> (bL +cL+ ”Z djej>

= L(¢)L(¢) + 2beg(L, L) + Z did;g(e;, e;)

2,7=1

— L(¢)L(¢) — 4 (—%L(d))) (—%Lwﬁ)) + gdi

_ZdQ Z 2

1=1

Since T'[¢] is a tensor (multilinear map) and symmetric, we infer

Tlo|(V,W) =T[¢](arL + asL, S1 L + B2 L)
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= SiT9|(L, L) + on BoT[@] (L, L) + o1 T[] (L, L) + 23T [¢](L, L)
= alﬁlT[¢](Lﬂ L) + (04152 + Oé2ﬁ1>T[¢]<L7L) + 06252T[¢] (L7 L)

n—1

= a151(L(9))* + (a1 B2 + anf3y) Z(@(@)Q + afa(L(¢))”

i=1

Thus, if V and W are causal, the assumption (9) yields that T'[¢](V, W) > 0, whereas, if V and W
are timelike, the same assumption (10) yields that

n

) <ei<¢>>2> ,

i=1

T[(m(‘/v W) > Calazﬁlﬂz <<L(¢))2 + (L(¢))2 +

for some strictly positive constant Cy,a,8 4, (independent of ¢ but dependent on the constants
aq, (g, B1, B2 which depend on V' and W), that completes the proof.

(b) First, since the Levi-Civita connection is compatible with the metric, we get

Vavﬁgb = va(gﬁyv'y(b) = (vagﬁv)v%b + gﬁvvavvqﬁ = gﬂ’yvavwﬁba
VOVt = 77V Vuop = ¢° 'V V0

and hence it follows
V. VP = V’V,0. (12)
Now, using (12), we compute

Vulldgl2-1) = V,(0760,0) = V (V7 V¢) = (V. V) Vod + VI G(V, V)
= (VuVo0)Ve0 + VI B(V, (952 V)
= (VuV7O)Vod + VI B(V,000) V26 + (952 V) (V,, V)
= (V. V7)) Vet + (92V7¢) (V. V 0)
= (V,V7¢)V,0 + VA(b(VMV%) =2V,0(V,V’o). (13)

Using (13), we get that
V0l6) = V* (0,600~ Jauliol-.

1 1

= (vy M¢)au¢ + 8u¢(vyau¢) - E(vyguuﬂdgbﬁ*l - §gm/vy(|d¢|3*1)
1

- (vy u¢)au¢ + ap¢(vy u¢) - §gpwvy<|d¢|_¢2]—1)

1
= (VVVM¢)VZ,¢ + Vu¢(vyvu¢) - §guuvy<|d¢|§*1)

= (VuVO)V.6+ VbV V,0) — 509" (013 1)
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1
= (V. V" )V.6 + V,b(T"9,00) — 5 Vulldof2 )
= (VuV"0)Vo + V. p(VV,0) = V,6(V,, VP 9)
=V, 0(V'Vu9) = (V,.0)(Lg¢) = 0,
that completes the proof.
(c) Let V be a Killing vector field. Then, by definition, we have 7[V] = 0. We define the 1-form
Ty (0] = T [o]V"
We need to compute
VAL (8] = V(T [0VY) = (V' Tu 8DV + T [¢](VHV?).
Observe that, since T is symmetric (meaning 7,,[¢] = T,,[¢]), we have
TuwloIV'VY = S (Tuw[o]V*VY + T [p]VIVY) = S (Tw[]VIVY + Tu[0]VIVE)

(T IVEVY + T [@]VIVE) = ST [9] (VFVY + VIVH)

NN —

T, V] = 0.
Consequently, we infer
VAT [0] = VY (VT l6]) + TulIVAVY = VA (VT3 00]) + Tl 9
= V'0,6(0,6) + Tuld]V"V* = V(6)Tyo + 5 Tulé}r V] =0,
that completes the proof.

9.4 Let f:[0,7] — [0, 400) satisty

() < At) + / M(s)f(s) ds

for some non-negative functions A, M on [0,7]. Show that

f) < A®) + / t el M@ dz \r(5) A(s) ds.

0

In particular, if A(t) = A is constant, show that
f(t) < eng(s)dsA.

This is known as Gronwall’s inequality; this inequality will play a crucial role in establishing
energy-type estimates for hyperpolic PDEs. (Hint: You might want to first consider the differ-
ential inequality satisfied by F'(t) for F(t) being the right hand side of the inequality we start
with. )
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Solution.
Let us set

)= [ a5

By differentiating F' and using thefact that the given inequality can be reexpressed as
f(t) < AQ) + F(), (14)

we have that:

)
o Je M(S)dSF,(t) e 1 M(S)dsM(t)A<t) te —Js (S)dsM( )F(t) _—
| A =

t
e-ﬁM@“F&ﬂta</xfﬁM“WWﬂ@AQMs
0

Noting that F'(0) = 0, we therefore get:
t
e Jo MR () << / e~ o MDA (5) A(s)ds =
0

t
F(t) < efs M / o= I3 M N1 (6) A(s)ds — / e M V1 (6) A(s)ds

0 0

Going back to (14), we therefore get

FO < AW+ F) = A0+ [ F7O0M(6) A s

that completes the proof of the first part.
For the second part, assume that A(t) = A, for all 0 < ¢ < T. Then, from the previous
computation, we have that

ﬂ><A+A/ZFMWmﬂ@@

<A-A / f M(r)d ) ds
—A- A(JM dsj
s=0

—A_ A (1 _ efotl\/[(T)dT>

= A— A+ AeloMdr
_ Aefg M(7)dr

, that completes the proof of the second part.
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