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9.1 In this exercise, we will establish Birkho�'s theorem for spherically symmetric solutions to the
vacuum Einstein equations in 3 + 1-dimensions.

(a) Let (M3+1, g) be a Lorentzian manifold such that M = Q1+1 × S
2 and, in any local

coordinate chart (x0, x1) on Q and using the standard (θ, ϕ) coordinates on S
2, g takes

the form
g = g̃ABdx

AdxB + r2
(
dθ2 + sin2 θdϕ2

)
with A,B ∈ {0, 1} and:

* g̃AB and r depend only on x0, x1,

* r > 0.

Deduce that (M, g) is spherically symetric, i.e. SO(3) acts isometrically on (M, g) with
spherical orbits. Show also that, around any point p ∈ Q, there exists a local coordinate
system (u, v, θ, ϕ) around {p} × S

2 such that

g = −Ω2(u, v)dudv + r2(u, v)
(
dθ2 + sin2 θdϕ2

)
.

(such a coordinate system is called double null). Hint: Use Exercise 2.3.

Remark. It can be shown that any spherically symmetric spacetime can be expressed
locally in the above form.

(b) Assume that (M, g) above satis�es the vacuum Einstein equations Ricαβ = 0. In dou-
ble null coordinates, it can be easily calculated that this system of equations takes the
following form in terms of the metric components Ω and r:

∂u∂v(r
2) = −1

2
Ω2,

∂u∂v log(Ω
2) =

Ω2

2r2
(
1 + 4Ω−2∂ur∂vr

)
,

∂u(Ω
−2∂ur) = 0,

∂v(Ω
−2∂vr) = 0.

(note that this is an overdetermined system; this is why, at the end of the day, Birkho�'s
theorem holds). Show that the quantity m : Q → R de�ned by

m
.
=

r

2

(
1− gαβ∂αr∂βr

)
=

r

2

(
1 + 4Ω−2∂ur∂vr

)
(which is known as the Hawking mass of the sphere {p} × S

2) is locally constant on Q.

(c) Let gM be the Schwarzschild metric for M ∈ R. Show that, in this case, m = M .

(d) Let p ∈ Q and assume, without loss of generality, that (u(p), v(p)) = 0. Show that there
exists an open neighborhood U of {p} × S

2 in M and an open neighborhood USch of a
point q in the maximally extended Schwarzschild spacetime with M = m(p) (chosen so
that r(q) = r(p)) which are isometric. Hint: Choose coordinates u, v on USch so that the
functions ∂ur(u, 0) and ∂vr(0, v) are the same in both spacetime domains. Deduce that the
functions r(u, v) and Ω(u, v) are the same for both spacetime domains, using the system
of equations.
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Solution. (a) Since, in the (x1, x2, θ, ϕ) coordinate system, the metric g takes the form

g = g̃ABdx
AdxB + r2gS2(θ, ϕ),

where gS2 = dθ2+sin2 θdϕ2 and g̃AB, r are independent of θ, ϕ, any map F : S2 → S
2, (θ, ϕ) → (θ′, ϕ′)

, which is an isometry of the spherical metric gS2 extends to a map (x1, x2, θ, ϕ) → (x1, x2, θ′, ϕ′) which
is an isometry of (M, g). Therefore, the group of isometries SO(3) of (S2, gS2) acts isometrically on
(M, g) with orbits of the form {p} × S

2 for each p ∈ Q.
Note that the components g̃AB in the expression above de�ne a Lorentzian metric g̃ onQ (it is easy

to check that it is symmetric and has Lorentzian signature, since the 3 + 1-metric g has Lorentzian
signature; the transformation formulas for g under changes of coordinates (x1, x2, θ, ϕ) → (y1, y2, θ, ϕ)
imply that g̃ indeed transforms as a (0, 2)-tensor). Using Exercise 2.3, for any p ∈ Q, there exists a
coordinate system (u, v) in a neighbohood U ⊂ Q of p in which the metric g̃ takes the form

g̃ = −Ω2(u, v)dudv

for some Ω ∈ C∞(U). Therefore, in the (u, v, θ, ϕ) coordinate system on U × S
2 ⊂ M, the metric g

takes the form
g = −Ω2(u, v)dudv + r2(u, v)

(
dθ2 + sin2 θdϕ2

)
.

(b) We can readily compute using the expression for m:

∂um = ∂u

(r
2

(
1 + 4Ω−2∂ur∂vr

))
=

∂ur

2

(
1 + 4Ω−2∂ur∂vr

)
+ 2r∂u(Ω

−2∂ur)∂vr + 2rΩ−2∂ur∂u∂vr.

Using the Einstein vacuum equations for the (Ω, r) pair (as listed in the exercise), among them, in
particular, the relations

∂u(Ω
−2∂ur) = 0 and ∂u∂vr = − 1

4r
Ω2 − 1

r
· ∂ur∂vr,

we obtain that ∂um = 0. Similarly, ∂vm = 0. Therefore, m is locally constant on Q (i.e. it is constant
in every connected component of Q).

(c) Using the more geometric relation

m =
r

2

(
1− gαβ∂αr∂βr

)
,

we can compute for the Schwarzschild metric

gM = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
,

in the (t, r, θ, ϕ) coordinate system covering region I of the maximal extension:

m =
r

2

(
1− gαβ∂αr∂βr

)
=

r

2

(
1− grr∂rr∂rr

)
=

r

2

(
1− (1− 2M

r
)
)
= M.
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Since m is locally constant and the maximally extended Schwarzschild spacetime is connected, we
deduce that m = M on the whole of the Schwarzschild spacetime.

(d) For this part, we will use the subscript S (i.e. ΩS and rS) to denote quantities associated
to the Schwarzschild metric. Let us consider the maximally extended Schwarzschild metric in the
Kruskal coordinates (u, v, θ, ϕ) (the precise choice of these coordinates is not important; any double
null coordinate system covering the whole Schwarzschild manifold would su�ce):

gM = −Ω2
Sdudv + r2S(u, v)

(
dθ2 + sin2 θdϕ2

)
,

where

Ω2
S =

32M3

rS
exp

(
− rS

2M

)
and rS(u, v) is de�ned by the implicit relation:(rS(u, v)

2M
r

− 1

)
exp

( rS
2M

)
= −uv

(recall that, in this case, the range of the coordinates (u, v) is R2 ∩ {uv < 1}).
Our aim is to show that, after applying a coordinate transformation of the form (u, v, θ, ϕ) →

(u′ = u′(u), v′ = v′(v), θ, ϕ) in a neighborhood U × S
2 of the point p ∈ M = Q× S

2, we can achieve

Ω(u, v) = ΩS(u, v) and r(u, v) = rS(u, v) for all (u, v) ∈ U (1)

(this will imply, in particular, that (M, g) is locally isometric, around p, to the open domain
in Schwarzschild spacetime parametrized by (u, v, θ, ϕ) ∈ U × S

2). To this end, let us �x the
Schwarzschild mass parameter M so that

M = m(p)

(recall that mS = M on the Schwarzschild spacetime). Note that since the metric coe�cient Ω2 can
be expressed in terms of the Hawking mass m and the sphere radius r by the relation

Ω2
(
1− 2m

r

)
= −4∂ur∂vr, (2)

showing (1) reduces, in this case, to simply establishing that

r(u, v) = rS(u, v) for (u, v) ∈ U .

Let q = (u0, v0, θ, ϕ) be a point on the maximally extended Schwarzschild spacetime satisfying

rS(q) = r(p).

We will distinguish two cases:

1. In the case when rS(q) = r(p) ̸= 2M , we will make no further assumptions on the point q.
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2. In the case when rS(q) = r(p) = 2M , the expression (2) (together with our assumption that
m(p) = M = mS(q)) implies that

∂ur(p)∂vr(p) = 0 = ∂urS(q)∂vrS(q).

Therefore, in this case, we choose the point q on the subset {r = 2M} = {u = 0} ∪ {v = 0} of
Schwarzschild spacetime so that ∂urS(q) = 0 if and only if ∂ur(p) = 0 and ∂vrS(q) = 0 if and
only if ∂vr(p) = 0.

By applying a coordinate transformation of the form (u, v) → (u+ u0, v + v0) on (M, g), we can
assume without loss of generality that(

u(p), v(p)
)
=
(
u(q), v(q)

)
.

Our choice of the point q above then implies that the functions ∂ur(u,v)
∂urS(u,v)

and ∂vr(u,v)
∂vrS(u,v)

are well-de�ned

and continuous in (u, v) a neighborhood of (u0, v0).
Let U = (u0 − δ, u0 + δ)× (v0 − δ, v0 + δ) for some δ > 0 small enough. We will show that there

exists a coordinate transformation of the form (u, v) → (u′, v′) = (F (u), G(v)) on U with F (u0) = u0

and G(v0) = v0 such that, in the new coordinate system on M, we have

r(u0, v) = rS(u0, v) and r(u, v0) = rS(u, v0) for v ∈ (v0−δ, v0+δ), u ∈ (u0−δ, u0+δ), respectively.

Since r(u0, v0) = rS(u0, v0), it su�ces to have

∂vr(u0, v) = ∂vrS(u0, v) and ∂ur(u, v0) = ∂urS(u, v0) for v ∈ (v0−δ, v0+δ), u ∈ (u0−δ, u0+δ), respectively.

Thus, the coordinate transformation functions F (u) and G(v) are uniquely determined by the fol-
lowing conditions (with respect to the old coordinates):{

dF
du
(u) = ∂ur(u,v0)

∂urS(u,v0)
, dG

dv
(v) = ∂vr(u0,v)

∂vrS(u0,v)
,

F (u0) = u0, G(v0) = v0

With respect to the new coordinate system on M, we have the property that both the functions
r(u, v) and rS(u, v) satisfy the non-linear wave equation

∂u∂vr =
2M

r(r − 2M)
∂ur∂vr on (u0 − δ, u0 + δ)× (v0 − δ, v0 + δ)

(this is simply equation ∂u∂v(r
2) = 1

2
Ω2 for the metrics g and gM , where we have used again the rela-

tion (2) to express Ω2 in terms of (m, r) together with the condition that m = M in a neighborhood
of p ∈ M) and satisfy r = rS along {u = u0} and {v = v0}. Therefore, the uniqueness property for
non-linear wave equations implies that

r = rS on (u0 − δ, u0 + δ)× (v0 − δ, v0 + δ),

as desired.
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9.2 Let (M, g) be a Lorentzian manifold and S ⊂ M be a submanifold. For any vector �eld
W along S which is orthogonal to S, we will de�ne the associated second fundamental form
χ(W ) : Γ(S)× Γ(S) → R by the relation

χ(W )(X, Y )
.
= g(∇XW,Y ),

where ∇ denotes the connection of g and we think of X, Y as being extended to vector �elds
in M.

(a) Show that χ(W ) is well de�ned independently of the choice of extensions of X, Y . Show
also that it is a symmetric (0, 2)-tensor �eld.

(*b) Assume that S is spacelike; we will also denote the induced (Riemannian) metric on S by

h. Let W be a non-vanishing vector �eld on M which is orthogonal to S and let Φ
(W )
t be

the �ow map of W . For the one parameter family of surfaces St = Φ
(W )
t (S), with induced

metrics ht, show that, in any coordinate chart (x1, x2) on Stwhich is transported along
the �ow of W :

d

dt

√
det(ht)

∣∣∣
t=0

= trhχ
(W ) ·

√
det(h),

where trhχ
(W ) .

= hABχ
(W )
AB For this reason, trhχ

(W ) is usually called the expansion in the
direction of W , since it measures the rate of change of the volume form of S. (Hint: You
might want to use Jacobi's formula from linear algebra: d

dt
log(detM) = tr(M−1 d

dt
M) for

a square-matrix valued function M(t).)

(c) We will now restrict to the case when M is 3 + 1 dimensional and time oriented and that
S is a 2-dimensional surface.. in that case, at each point p ∈ S, the normal bundle TS⊥

is spanned by two future directed null vector �elds along S, which we will denote with
L and L. We will also denote the induced (Riemannian) metric on S by h. We will say
that such a surface S is trapped if it is compact and, at every point on S, both null
expansions are negative, i.e.

trhχ
(L), trhχ

(L) < 0.

Show that, on the maximally extended Schwarzschild spacetime, the spheres of symmetry
are trapped if and only if they correspond to points in the region II of the Penrose diagram
(i.e. the black hole region).

Remark. We will later see in class that, as a consequence of Penrose's incompleteness theorem, if
an asymptotically �at spacetime contains a trapped surface S, then this is necessarily inside a black
hole, i.e. J+[S] does not reach future null in�nity I +. Since the condition de�ning a trapped surface
is anopen condition, a trapped surface remains trapped even under small changes of the metric; thus,
small perturbations of Schwarzschild spacetime still contain a black hole.

Solution.
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(a) Let X, Y be tangent vector �elds to S, extended arbitrarily to vector �elds on M. Let us also
extend W arbitrarily to a vector �eld on M. In view of the fact that W |S is orthogonal to S and X
is tangential to S, we have

g(W,Y )|S = 0 ⇒ X
(
g(W,Y )

)∣∣
S
= 0 ⇒ g

(
∇XW,Y

)∣∣
S
+ g
(
W,∇XY

)∣∣
S
0 =,

from which we deduce that:
χ(W )(X, Y ) = −g

(
W,∇XY

)
|S. (3)

The fact that χ(W )(X, Y ) is independent of the choice of extension of X, Y,W now follows from
the fact that ∇XY |S is independent of the choice of extensions from X, Y (which can be readily
veri�ed in any local coordinate system (x1, . . . , xdim(M)) on U ⊂ M in which S ∩ U is the set
{x1 = . . . xdim(M)−dim(S) = 0}).

To prove that χ(W ) is a symmetric (0, 2)-tensor �eld, we will show that

� For all smooth functions f1, f2 : M → R and smooth vector �elds X, Y1 and Y2, we have

χ(W )(X, f1Y1 + f2Y2) = f1χ
(W )(X, Y1) + f2χ

(W )(X, Y2). (4)

� For all smooth vector �elds X and Y , we have

χ(W )(X, Y ) = χ(W )(Y,X). (5)

Relation (4), follows immediately from the fact that g is a tensor: For all smooth functions f1, f2
and smooth tangent vectors X, Y1, Y2, we have

χ(W )(X, f1Y1 + f2Y2) = g(∇XW, f1Y1 + f2Y2)

= f1g(∇XW,Y1) + f2g(∇XW,Y2)

= f1χ
(W )(X, Y1) + f2χ

(W )(X, fY2).

Relation (5) follows immediately from (3), the fact that the Levi-Civita connection is symmetric and
the fact that, if X, Y ∈ Γ(M) are tangent to S, then [X, Y ] is also tangent to S (which can be
veri�ed in local coordinates as above):

χ(W )(X, Y )−χ(W )(Y,X) = −g
(
W,∇XY

)
+g
(
W,∇YX

)
= −g

(
W,∇XY−∇YX

)
= −g(W, [X, Y ]) = 0.

(b) Let S ⊂ M be a spacelike hypersurface and W ∈ Γ(M) be as in the statement of the exercise;
recall that W doesn't vanish anywhere. Let also n = dim(S), m = dim(M). Note that, for any
p ∈ S, since W |p ⊥ TpS and TpS is spacelike, we have that W |p is transversal to TpS.

1

For any p ∈ S, let (x1, . . . , xn) be a local coordinate system in a neighborhood U ⊂ S of p.
Since W |p ̸= 0 and is transversal to TpS, the �ow map Φ(W ) : (−δ, δ) × U → M, (t, x1, . . . , xn) →
Φ

(W )
t (x1, . . . , xn) is an embedding on a small neighborhood of (0, p) (to see this, use the implicit

function theorem: note that the di�erential dΦ(W )|(0,p) satis�es dΦ(W )|(0,p)(X) = X for any X ∈ TpS

1That wouldn't necessarily be the case if TpS was null, for instance.

Page 6



EPFL� Fall 2024

SOLUTIONS: Series 9

Di�erential Geometry IV:

General relativity
G. Moschidis

13 Nov. 2024

and dΦ(W )|(0,p)(∂t) = W |p, hence dΦ(W )|(0,p) is injective since W |p is transversal to TpS). Without
loss of generality, we will assume that δ > 0 has been �xed small enough and U is a small enough
neighborhood of p in S so that Φ(W ) : (−δ, δ)× U → M is an embedding.

Let us denote withN = Φ(W )
(
(−δ, δ)×U

)
⊂ M. Note that, through the map Φ(W ), (t, x1, . . . , xn)

de�nes a coordinate system on N , such that ∂t = W and (x1, . . . , xn) is a coordinate system on the

slices Ut = Φ
(W )
t (U) for each t ∈ (−δ, δ). Thus, if ht denotes the induced metric on Ut (so that

h = h0), we can compute:

∂t(ht)ij = ∂t
(
ht(∂i, ∂j)

)
= ht

(
∇∂t∂i, ∂j

)
+ ht

(
∇∂t∂j, ∂i

)
[∂t,∂i]=0

= ht

(
∇∂i∂t, ∂j

)
+ ht

(
∇∂j∂i, ∂i

)
.

Evaluating the above at t = 0 and using the fact that ∂t = W and χ
(W )
ij = h(∇∂iW,∂j), we get

∂t(ht)ij|t=0 = χ
(W )
ij + χ

(W )
ji = 2χ

(W )
ij . (6)

Using Jacobi's formula d
dt
log(detM) = tr(M−1 d

dt
M), we then get:

∂t
√

det(ht)
∣∣
t=0

=
1

2

∂t
(
det(ht)

)∣∣
t=0√

det(h)
=

1

2

det(h) ·
(
hij
t · ∂t(ht)ij

)
|t=0√

det(h)
=

1

2

√
det(h)·2hijχ

(W )
ij =

√
det(h)trhχ

(W ).

Let us denote by St the image Φ
(W )
t (S). We will �x a coordinate system (x1, . . . , xn) on Φ

(W )
t (U)

so that the functions xi are transported along the �ow of W .

(c) Recall that the maximally extended Schwarzschild spacetime (M(M)
Sch , gM) is covered by the

Kruskal�Szekeres double null coordinate system (U, V, θ, φ), in which M(M)
Sch ≃ U1+1 × S

2 with U ={
UV < 1

}
and

gM = −32M3

r
e−

r
2M dUdV + r2

(
dθ2 + sin2 θdφ2

)
,

where r = r(U, V ) is de�ned implicitly by the relation

U · V =
(
1− r

2M

)
e

r
2M (7)

(any local choice of a spherically symetric double null coordinate system would work equally well
for the computation below). We �x a time orientation so that the null vectors ∂U , ∂V are future
directed. The black hole interior (the region II in the Penrose diagram) corresponds to the region{
U > 0, V > 0

}
.

The spheres of symmetry correspond to the 2-surfaces {U, V = const}. Note that the induced
metric on those surfaces is

h = r2
(
dθ2 + sin2 θdφ2

)
= r2gS2 ,

while the future directed null normal vector �elds L,L can be simply chosen to be L = ∂V , L = ∂U .
Note that, in this case, the �ow map of L is simply a translation in the V coordinate (and similarly
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for L); therefore, from the formula (6) (with the role of t now played by V ), we have (with (x1, x2) =
(θ, φ))

χ
(L)
ij =

1

2
∂V hij =

1

2
∂V

(
r2(gS2)ij

)
= r∂V r(gS2)ij

(since the components of (gS2)ij only depend on (x1, x2)) and, similarly,

χ
(L)
ij = r∂Ur(gS2)ij.

Therefore, the sphere of symmetry is trapped if and only if ∂Ur < 0 and ∂V r < 0. Di�erentiating the
implicit relation (7) with respect to U and V , it is easy to verify that this only holds when U > 0
and V > 0.

9.3 Let

Tµν [ϕ] = ∂µϕ∂νϕ− 1

2
gµνg

αβ∂αϕ∂βϕ

be the energy momentum tensor associated to the scalar wave equation □gϕ = 0 on (M, g)
(recall that □g

.
= gαβ∇α∇βϕ = 1√

−detg
∂α
(√

−detggαβ∂β
)
). For the �rst two questions, we will

not assume that ϕ : M → R solves any particular equation.

(a) Show that, for any ϕ ∈ C∞(M), any p ∈ M and any two future oriented causal vectors
V,W ∈ TpM:

Tµν [ϕ]V
µW ν ⩾ 0

(Hint: Choose a suitable double null frame in TpM). If V,W are moreover timelike, show
that

Tµν [ϕ]V
µW ν ⩾ c

n∑
i=0

|∂iϕ|2,

with the constant c > 0 depending on V,W , g and the choice of local coordinates (but is
independent of ϕ).

(b) Assume, now, that ϕ solves □gϕ = 0. Show that

(divT [ϕ])ν
.
= gαβ∇αTβν [ϕ] = 0.

(c) Show that, if, in addition, V is a Killing vector �eld of (M, g), then the 1-form JV
ν [ϕ]

.
=

Tµν [ϕ]V
µ is divergence free, i.e.

divJV [ϕ]
.
= gαβ∇αJ

V
β [ϕ] = 0.

Solution.

(a) Note that, for any V,W ∈ Γ(M):

T [ϕ](V,W ) = Tµν [ϕ]V
µW ν
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= (V µ∂µϕ)(W
ν∂νϕ)−

1

2
(gµνV

µW ν)(gαβ∂αϕ∂βϕ)

= V (ϕ)W (ϕ)− 1

2
g(V,W )gαβ(∂αϕ)(∂βϕ).

Assume that both V and W are causal and future directed (so that, in particular, g(V,W ) ⩽ 0).
The tangent vectors V and W span the space Π := span({V,W}) ⊂ TM. If the dimension of Π is
one, namely if W = λV for some λ > 0 (the sign condition follows from the assumption that both

vector �elds are future directed), the claim follows easily: If V is null, then T (V,W ) = λ
(
V (ϕ)

)2
⩾ 0;

if V is timelike then, with respect to an orthonormal frame {e0, e1, . . . , en} such that V = λ′e0, we
can compute from the above expression:

T (V,W ) = λT (V, V ) = λ(λ′)2T (e0, e0) =
1

2
λ(λ′)2

(
e0(ϕ))

2 + · · ·+
(
en(ϕ))

2
)
.

Thus, from now on, we will assume without loss of generality that V,W are not collinear, so that
Π is a 2 dimensional plane. Note that Π is a timelike plane, since it contains at least one timelike
vector.

We choose two future directed null vectors L and L spanning Π, normalized so that

g(L,L) = 0, g(L,L) = 0, g(L,L) = −2 (8)

and express V and W with respect to this basis,

V = α1L+ α2L, W = β1L+ β2L.

Note that, since V,W,L, L are all future directed (and hence all their pairwise inner products are
non-negative), we must have

α1, α2, β1, β2 ⩾ 0. (9)

Moreover, V,W are both strictly timelike if and only if

α1, α2, β1, β2 > 0 (10)

(since if one of these coe�cients (say α1) is 0, then the corresponding vector (in this case, V ) is equal
to a null vector (in this case, L).

Since Π is a 2-dimensional subspace, we can split the tangent space as

TpM = Π⊕ Π⊥,

where

Π := span({V,W}),
Π⊥ := {X ∈ TpM : g(X, Y ) = 0, ∀Y ∈ Π}

Note that Π⊥ is spacelike and of dimension n− 1; let {e1, . . . , en−1} be an orthonormal basis of Π⊥.
Thus,

g(L, ei) = 0, g(L, ei) = 0, g(ei, ej) = δij (11)
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for all i = 1, 2, . . . , n− 1. We can easily compute

T [ϕ](L,L) = L(ϕ)L(ϕ)− 1

2
g(L,L)gαβ(∂αϕ)(∂βϕ) = (L(ϕ))2,

T [ϕ](L,L) = L(ϕ)L(ϕ)− 1

2
g(L,L)gαβ(∂αϕ)(∂βϕ) = (L(ϕ))2

Moreover, there exist real ceo�cients b, c and {di : i = 1, . . . , n− 1} so that

gradϕ = bL+ cL+
n−1∑
i=1

diei

(where gradϕα = ∂αϕ = gαβ∂βϕ). In fact, due to (8) and (11), these ceo�cients are given by

b = −1

2
g(gradϕ, L) = −1

2
dϕ(L) = −1

2
L(ϕ),

c = −1

2
g(gradϕ, L) = −1

2
dϕ(L) = −1

2
L(ϕ),

di = g(gradϕ, ei) = dϕ(ei) = ei(ϕ).

Now, these yield that

T [ϕ](L,L) = L(ϕ)L(ϕ)− 1

2
g(L,L)gαβ(∂αϕ)(∂βϕ)

= L(ϕ)L(ϕ) + gαβ(∂αϕ)(∂βϕ)

= L(ϕ)L(ϕ) + gαβ(∂
αϕ)(∂βϕ)

= L(ϕ)L(ϕ) + g

(
bL+ cL+

n−1∑
i=1

diei

)(
bL+ cL+

n−1∑
j=1

djej

)

= L(ϕ)L(ϕ) + 2bcg(L,L) +
n−1∑
i,j=1

didjg(ei, ej)

= L(ϕ)L(ϕ)− 4bc+
n−1∑
i=1

d2i

= L(ϕ)L(ϕ)− 4

(
−1

2
L(ϕ)

)(
−1

2
L(ϕ)

)
+

n−1∑
i=1

d2i

= L(ϕ)L(ϕ)− L(ϕ)L(ϕ) +
n−1∑
i=1

d2i

=
n−1∑
i=1

d2i =
n−1∑
i=1

(ei(ϕ))
2.

Since T [ϕ] is a tensor (multilinear map) and symmetric, we infer

T [ϕ](V,W ) = T [ϕ](α1L+ α2L, β1L+ β2L)
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= α1β1T [ϕ](L,L) + α1β2T [ϕ](L,L) + α2β1T [ϕ](L,L) + α2β2T [ϕ](L,L)

= α1β1T [ϕ](L,L) + (α1β2 + α2β1)T [ϕ](L,L) + α2β2T [ϕ](L,L)

= α1β1(L(ϕ))
2 + (α1β2 + α2β1)

n−1∑
i=1

(ei(ϕ))
2 + α2β2(L(ϕ))

2

Thus, if V and W are causal, the assumption (9) yields that T [ϕ](V,W ) ⩾ 0, whereas, if V and W
are timelike, the same assumption (10) yields that

T [ϕ](V,W ) ⩾ Cα1α2β1β2

(
(L(ϕ))2 + (L(ϕ))2 +

n−1∑
i=1

(ei(ϕ))
2

)
,

for some strictly positive constant Cα1α2β1β2 (independent of ϕ but dependent on the constants
α1, α2, β1, β2 which depend on V and W ), that completes the proof.

(b) First, since the Levi-Civita connection is compatible with the metric, we get

∇α∇βϕ = ∇α(g
βγ∇γϕ) = (∇αg

βγ)∇γϕ+ gβγ∇α∇γϕ = gβγ∇α∇γϕ,

∇β∇αϕ = gβγ∇γ∇αϕ = gβγ∇α∇γϕ

and hence it follows

∇α∇βϕ = ∇β∇αϕ. (12)

Now, using (12), we compute

∇µ(|dϕ|2g−1) = ∇µ(∂
σϕ∂σϕ) = ∇µ(∇σϕ∇σϕ) = (∇µ∇σϕ)∇σϕ+∇σϕ(∇µ∇σϕ)

= (∇µ∇σϕ)∇σϕ+∇σϕ(∇µ(gσλ∇λϕ))

= (∇µ∇σϕ)∇σϕ+∇σϕ(∇µgσλ)∇λϕ+ (gσλ∇σϕ)(∇µ∇λϕ)

= (∇µ∇σϕ)∇σϕ+ (gσλ∇σϕ)(∇µ∇λϕ)

= (∇µ∇σϕ)∇σϕ+∇λϕ(∇µ∇λϕ) = 2∇ρϕ(∇µ∇ρϕ). (13)

Using (13), we get that

∇νTµν [ϕ] = ∇ν

(
∂µϕ∂νϕ− 1

2
gµν |dϕ|2g−1

)
= (∇ν∂µϕ)∂νϕ+ ∂µϕ(∇ν∂νϕ)−

1

2
(∇νgµν)|dϕ|2g−1 −

1

2
gµν∇ν(|dϕ|2g−1)

= (∇ν∂µϕ)∂νϕ+ ∂µϕ(∇ν∂νϕ)−
1

2
gµν∇ν(|dϕ|2g−1)

= (∇ν∇µϕ)∇νϕ+∇µϕ(∇ν∇νϕ)−
1

2
gµν∇ν(|dϕ|2g−1)

= (∇µ∇νϕ)∇νϕ+∇µϕ(∇ν∇νϕ)−
1

2
gµν∇ν(|dϕ|2g−1)
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= (∇µ∇νϕ)∇νϕ+∇µϕ(∇ν∇νϕ)−
1

2
∇µ(|dϕ|2g−1)

= (∇µ∇νϕ)∇νϕ+∇µϕ(∇ν∇νϕ)−∇ρϕ(∇µ∇ρϕ)

= ∇µϕ(∇ν∇νϕ) = (∇µϕ)(□gϕ) = 0,

that completes the proof.

(c) Let V be a Killing vector �eld. Then, by de�nition, we have π[V ] = 0. We de�ne the 1-form

JV
µ [ϕ] := Tµν [ϕ]V

µ

We need to compute

∇µJV
µ [ϕ] = ∇µ(Tµν [ϕ]V

ν) = (∇µTµν [ϕ])V
ν + Tµν [ϕ](∇µV ν).

Observe that, since T is symmetric (meaning Tµν [ϕ] = Tνµ[ϕ]), we have

Tµν [ϕ]∇µV ν =
1

2
(Tµν [ϕ]∇µV ν + Tµν [ϕ]∇µV ν) =

1

2
(Tµν [ϕ]∇µV ν + Tνµ[ϕ]∇νV µ)

=
1

2
(Tµν [ϕ]∇µV ν + Tµν [ϕ]∇νV µ) =

1

2
Tµν [ϕ] (∇µV ν +∇νV µ)

=
1

2
Tµν [ϕ]π

µν [V ] = 0.

Consequently, we infer

∇µJV
µ [ϕ] = V ν(∇µTµν [ϕ]) + Tµν [ϕ]∇µV ν = V ν(∇µTνµ[ϕ]) + Tµν [ϕ]∇µV ν

= V ν∂νϕ(□gϕ) + Tµν [ϕ]∇µV ν = V (ϕ)□gϕ+
1

2
Tµν [ϕ]π

µν [V ] = 0,

that completes the proof.

9.4 Let f : [0, T ] → [0,+∞) satisfy

f(t) ⩽ A(t) +

� t

0

M(s)f(s) ds

for some non-negative functions A,M on [0, T ]. Show that

f(t) ⩽ A(t) +

� t

0

e
� t
s M(x) dxM(s)A(s) ds.

In particular, if A(t) = A is constant, show that

f(t) ⩽ e
� t
0 M(s) dsA.

This is known as Gronwall's inequality ; this inequality will play a crucial role in establishing
energy-type estimates for hyperpolic PDEs. (Hint: You might want to �rst consider the di�er-
ential inequality satis�ed by F ′(t) for F (t) being the right hand side of the inequality we start
with. )
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Solution.

Let us set

F (t)
.
=

� t

0

M(s)f(s)ds.

By di�erentiating F and using thefact that the given inequality can be reexpressed as

f(t) ⩽ A(t) + F (t), (14)

we have that:

F ′(t) = M(t)f(t) ⩽ M(t)A(t) +M(t)F (t) =⇒

e−
� t
0 M(s)dsF ′(t) ⩽ e−

� t
0 M(s)dsM(t)A(t) + e−

� t
0 M(s)dsM(t)F (t) =⇒

e−
� t
0 M(s)dsF ′(t)− e−

� t
0 M(s)dsM(t)F (t) ⩽ e−

� t
0 M(s)dsM(t)A(t) =⇒(

e−
� t
0 M(s)dsF (t)

)′
⩽ e−

� t
0 M(s)dsA′(t) =⇒

e−
� s
0 M(τ)dτF (s)|s=t

s=0 ⩽
� t

0

e−
� s
0 M(τ)dτM(s)A(s)ds.

Noting that F (0) = 0, we therefore get:

e−
� t
0 M(τ)dτF (t) ⩽⩽

� t

0

e−
� s
0 M(τ)dτM(s)A(s)ds =⇒

F (t) ⩽ e
� t
0 M(τ)dτ

� t

0

e−
� s
0 M(τ)dτM(s)A(s)ds =

� t

0

e
� t
s M(τ)dτM(s)A(s)ds

Going back to (14), we therefore get

f(t) ⩽ A(t) + F (t) = A(t) +

� t

0

e
� t
s M(τ)dτM(s)A(s)ds,

that completes the proof of the �rst part.
For the second part, assume that A(t) = A, for all 0 ⩽ t ⩽ T . Then, from the previous

computation, we have that

f(t) ⩽ A+ A

� t

0

e
� t
s M(τ)dτM(s)ds

⩽ A− A

� t

0

d

ds

(
e
� t
s M(τ)dτ

)
ds

= A− A

(
e
� t
s M(τ)dτ

∣∣∣s=t

s=0

)
= A− A

(
1− e

� t
0 M(τ)dτ

)
= A− A+ Ae

� t
0 M(τ)dτ

= Ae
� t
0 M(τ)dτ

, that completes the proof of the second part.
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